Course Title	Introduction to Quantum Materials and Devices		Course No (to be assigned by	PHY5XXXX				
Department/	Dhyeice		Academic Cell) Credits	L	т	Р	С	
Specialization	Physics		Ciedits	_	l '			
Specialization								
				3	1	0	4	
Offered for	UG (higher semester)/PG/DD		Status	Core Elective		tive 🗸		
Faculty	Dr. Manjusha Battabyal		Туре	New ▼ Revision		sion		
proposing the								
course						1		
Recommendation from the DAC: Recommended		Date of DAC: 11.02.2025	5					
External Expert(s)	1. Prof K Sethupathi, IIT Madras;		2. Prof Pranaba K Muduli, IIT Delhi					
Learning objective	materials. > The course will foo		ents for practical understanding on various quantum					
Learning outcome		quantum transport phenomena. The students can understand quantum principles, can identify the quantum						
Learning outcome	•	materials and analyze their properties.						
	>	The students can describe the role of quantum phenomena, such as						
		superconductivity, topological states, and quantum coherence, in the						
		functionality of materials and devices.						
	>	 The students will be able to apply principles of quantum materials to design 						
		and conceptualize quantum devices for applications in computing, sensing,						
		and energy technologies.						
Contents of the	Quantum mechanics- fundamentals, Heisenberg Uncertainty Principle, Quantization and					l the		
			ity - the quantum harmonic oscillator, Quantum LC circuit,					
approximate break	quantisation	quantisation of electromagnetic fields (6L+1T)						
up of hours)		Quantum Materials: Materials in low dimensional state, density of states, quantum wells and						
		heterostructures, quantum wires, quantum dots, nanocrystals, sprintronic-materials, practical						
		(experiment) on synthesis protocol of quantum dots (12L+4T).						
		Properties: Optical properties, absorption, luminescence, tunneling processes in low-						
		dimensional semiconductors, quantum conductance, quantum memory, quantum-well lasers.						
		superconductivity (Cooper-pairs, the Josephson effect, flux quantisation) sprintronic properties of the materials (14L+5T).						
		Ouantum devices: Single-electron transistor (SET), calculation and fabrication methods,						
		analyses techniques; Quantum optoelectronic devices, Quantum devices at ultra-low						
		temperatures, candidates for quantum computers, Superconducting qubit, basics of						
		superconducting quantum computers (10L+4T).						
Text books		1. Debdeep Jena, Quantum Physics of Semiconductor Materials and Devices (Oxford University						
		Press, Oxford, 2022) ISBN: 9780198856856						
	•	 J Paglione, N P Butch, E E Rodriguez, Fundamentals of Quantum Materials, (World Scientific publisher, 2021), ISBN: 978-981-12-1936-8 						
Reference books		David Ferry, Quantum Mechanics An Introduction for Device Physicists and Electrical						
		Engineers, CRC Press, 2020, ISBN 9780367467272						
	I	 Mohamed Henini, Marcelo Oliveira Rodrigues, Quantum Materials, Devices, and Applications, 2022, Elsevier Publisher, ISBN-9780128205662 						